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ABSTRACT- The thalamic ventral posterior lateral neurons 
(VPL) respond to somatosensory stimulation with a burst of 
action potentials followed by a periodic oscillation at the 
spindle frequency. This study aims to build a statistical model 
to quantify the multi -unit behavior and explain putative 
underlying mechanisms. Multi -unit data, comprising 4 or 5 
different neurons, were collected from anesthetized adult rats 
(n=2) by positioning a microelectrode in the ventral posterior 
lateral (VPL) nuclei of the thalamus. Using an observation 
window of 1 ms and assuming that neuronal fi ring is 
uncorrelated within this window, the firing rate of the 
neurons can be successfully modeled by using a non-
homogeneous binomial model with N=1 (with 99.5% 
confidence). Using maximum likelihood estimator (MLE) of 
the parameter p, statistically consistent prediction of the 
parameters of non-homogeneous binomial model was made 
using a minimum of 50 stimulus-response pairs. The inter-
stimulus interval histograms of the individual neuronal firing 
indicate a possible stochastic resonance behavior that will 
model the spindles in thalamus. Our model offers a 
statistically elegant description of oscillations in neuronal 
action potential data and can in general, be used to track 
changes in the neuronal dynamics with function or 
dysfunction.  
Keyword-Thalamus, oscillation, binomial model, spindle, 
stochastic resonance  

 
I. INTRODUCTION 

 
    Neuronal oscillations have been observed in several 
regions of the brain either spontaneously or in response to 
periodic stimuli. However, quantification of these 
rhythmic oscillations has been confined to averaging 
histograms using auto-correllograms or post-stimulus 
histograms (for stimulus-response pairs) [1]. These 
histograms test for consistency in the observation but give 
no insights into the generating process, nor do they test for 
statistical significance. An earlier effort by Konig [2] 
attempts to fit a generalized Gabor function to histograms 
of periodic oscillations using least squares. The parameters 
of the Gabor function then quantify the oscillations. 
However, this model still does not describe the statistics of 
the generating process and may not be useful for 
mechanistic insights.  
    This study focuses on multi-unit oscillations observed 
due to a reciprocal interaction between reticular thalamic 
and dorsal thalamic nuclei in response to somatosensory 
stimulation [3]. Cortex-thalamus-cortex loops generate a 
powerful and coherent feedback onto the thalamus, 
resulting in highly coherent oscillations [4], and the 

synchrony is also maintained by intrathalamic connectivity 
[5]. We investigate appropriate statistical models that can 
describe oscillations recorded from dorsal thalamic 
neurons and then attempt to make consistent estimates of 
the descriptors.  
 

II. METHODOLOGY 
 
    Multi-unit data was collected from adult Wistar rats 
(n=2). Tungsten electrodes (FHC Inc., Bowdoinham, ME) 
were implanted in the thalamic ventral posterior lateral 
(VPL) area for recording mu lti-unit data. The rat was 
under barbiturate anesthesia (sodium pentobarbital) during 
the experiment. Periodic somatosensory stimulation was 
given every 3 sec. Data was acquired using Spike2 
(Cambridge Electronic Devices, Cambridge, UK). The 
units were sorted using a template matching algorithm 
within Spike2.  
     
    Time -series analyses were performed on the successive 
spike-counts measured with bin width of 1 msec. The 
successive firing event of the neuron is not independent 
due to the modulation of the network of RT (reticular-
thalamic) and VPL neurons, so the Poisson model is not 
suited here. But within a small time window of 1 msec, 
which is small enough for just one action potential, we 
fitted a non-homogeneous binomial model. A Maximum 
Likelihood Estimator (MLE) is used here to estimate the 
probability of the firing P(t), which changes with time 
after the stimulus. Wilcoxon rank sum test is used to 
evaluate the statistical hypothesis. A p-value (0<p<1) 
much larger than zero indicates a good match between the 
model and the data. The evolution of estimated mean and 
variance of the firing probability was investigated every 
five stimulus to determine the minimum number of 
stimulus-response pairs needed to make a statistically 
consistent estimate of parameter P(t). 
Cross-correlation and power spectrum is used to 
investigate the relationship of P(t) of two different 
neurons. To investigate the burst behavior in each spindle, 
we separate the 3 sec inter-stimulus interval into 30 
segments and plot the ISI of each segment. The ISI plots 
were also examined for the presence of stochastic 
resonance. 
 
 
 



Report Documentation Page

Report Date 
25OCT2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
A Non-Homogeneous Binomial Model for Thalamic 
Oscillations

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Department of Bioengineering, Arizona State University,
Tempe, AZ 85287-9709

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
October 25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original
document contains color images.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
3



III. RESULTS 
 
    Thalamic oscillations have two components, a 
modulating spindle oscillation which is caused by cortex-

thalamus-cortex loops with frequency of about 10 Hz (Fig. 
1(a)), and the inner spindle bursts (Fig. 1(b). 
    Using one milli-second time bin with at most one spike 
(action potential) in each window, the whole oscillation 
can be modeled as a non-homogenous binomial process, 
where P(t) (the probability of firing at time t) changes with 
time (Fig. 1(a)). The p-values from the Wilcoxon 
hypothesis tests at different times after stimulation are 
shown in Fig. 2. The large p-values during the times of 

action potential firing indicate a good fit to the non-
homogeneous binomial model. 
Using a maximum likelihood estimator (MLE), we 
estimated the evolution of mean (P(t)) and variance of the 
firing rate at specific time -points after stimulus. The 
estimates are plotted against increasing numbers of 
stimulus-response pairs in Figs. 3(a) and (b). The two plots 

shown correspond to 16 msec and 122 msec after stimulus 
(corresponding to the first and second peak in Fig. 1(a)). 
Fig. 3 shows that the neuronal firing is a stationary random 
process. With approximately 50 stimulus-response pairs 
we can make a good prediction of the mean (P(t)). 

After sorting the multi-unit data, we investigate the 
dynamics of each neuron. The power spectra of P(t) of two 
neurons are shown in Fig. 4 with very similar profiles and 
fundamental frequencies. The cross correlation of P(t) 
between the two neurons indicates a 1ms phase shift. Figs. 
5(a) and 5(b) indicate that the most frequent occurrence of 
the inter-spike interval is around 3 msec for both neurons.  
There are also non-periodic fluctuations at 4ms, 5ms, and 
6ms.  

Fig.  2. Wilcoxon hypothesis test result  

Fig. 3. Evolution of mean and variance at  (a) the 
first peak (n=16 ms) and (b) the second 
peak(n=122 ms ) 
 

(a) 

(b) 

Fig. 1. Post-Stimulus Histogram (PSH) of (a). 
Thalamic oscillation (b). inner spindle burst 

(a) 

(b) 

Fig. 4. Power spectrum of P(t) of two neurons 
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IV.DISCUSSION AND CONCLUSIONS 

 
    A non-homogeneous binomial model has been used to 
describe the statistical behavior of the thalamic 
oscillations.  Consistent estimates of the probability of 
firing, P(t) can be obtained from a minimum of 50 
stimulus-response pairs by using a maximum likelihood 
estimator (MLE). This provides an elegant statistical 
description of the thalamic response as whole and neuronal 

oscillations in particular. Conventional methods to 
estimate periodicities in neuronal oscillations involve 
averaging of approximately 100 response histograms. The 
only known effort to quantify neuronal oscillations 
involves fitting a known periodic function to the averaged 
histogram [2], which does not describe the statistics of the 
generating process .  
    Results from cross-correlation indicate that the neurons 
fire synchronously with a constant time delay. In the ISI, 
there is a strong first peak at the time of about 3msec, 
which means the neuron most probably wait about 3msec 

to fire again. It implies that in VPL there should exist an 
intrinsic periodic driving force, but it is not strong enough 
and must have the help of intrinsic noise to make the 
neuron fire [6]. In fact, Na+ channels provide a possible 
source of intrinsic noise [7], and the network of oscillators 
may provide the intrinsic periodic driving force for each 
neuron [8].  Future work needs to be done by using 
stochastic resonance to understand the underlining 
mechanism of the non-homogenous binomial model.                      
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Figure 5: ISI distribution of each spindle after stimulation 
(a). neuron 1. (b) neuron 2. The spindle numbers 
correspond to the peaks in the histogram following the 
stimulus. Each peak corresponds to a spindle. The time 
labels corresponds to the time after stimulation. 

(a) 

(b) 

dKiiiDin a^Num I 

WfFlfr UllAhUl 

dKiiiDin a^Num } 

WfFlfr UllAhUl 


	Main Menu
	-------------------------
	Welcome Letter
	Chairman Address
	Keynote Lecture
	Plenary Talks
	Mini Symposia
	Workshops
	Theme Index
	1.Cardiovascular Systems and Engineering 
	1.1.Cardiac Electrophysiology and Mechanics 
	1.1.1 Cardiac Cellular Electrophysiology
	1.1.2 Cardiac Electrophysiology 
	1.1.3 Electrical Interactions Between Purkinje and Ventricular Cells 
	1.1.4 Arrhythmogenesis and Spiral Waves 

	1.2. Cardiac and Vascular Biomechanics 
	1.2.1 Blood Flow and Material Interactions 
	1.2.2.Cardiac Mechanics 
	1.2.3 Vascular Flow 
	1.2.4 Cardiac Mechanics/Cardiovascular Systems 
	1.2.5 Hemodynamics and Vascular Mechanics 
	1.2.6 Hemodynamic Modeling and Measurement Techniques 
	1.2.7 Modeling of Cerebrovascular Dynamics 
	1.2.8 Cerebrovascular Dynamics 

	1.3 Cardiac Activation 
	1.3.1 Optical Potential Mapping in the Heart 
	1.3.2 Mapping and Arrhythmias  
	1.3.3 Propagation of Electrical Activity in Cardiac Tissue 
	1.3.4 Forward-Inverse Problems in ECG and MCG 
	1.3.5 Electrocardiology 
	1.3.6 Electrophysiology and Ablation 

	1.4 Pulmonary System Analysis and Critical Care Medicine 
	1.4.1 Cardiopulmonary Modeling 
	1.4.2 Pulmonary and Cardiovascular Clinical Systems 
	1.4.3 Mechanical Circulatory Support 
	1.4.4 Cardiopulmonary Bypass/Extracorporeal Circulation 

	1.5 Modeling and Control of Cardiovascular and Pulmonary Systems 
	1.5.1 Heart Rate Variability I: Modeling and Clinical Aspects 
	1.5.2 Heart Rate Variability II: Nonlinear processing 
	1.5.3 Neural Control of the Cardiovascular System II 
	1.5.4 Heart Rate Variability 
	1.5.5 Neural Control of the Cardiovascular System I 


	2. Neural Systems and Engineering 
	2.1 Neural Imaging and Sensing  
	2.1.1 Brain Imaging 
	2.1.2 EEG/MEG processing

	2.2 Neural Computation: Artificial and Biological 
	2.2.1 Neural Computational Modeling Closely Based on Anatomy and Physiology 
	2.2.2 Neural Computation 

	2.3 Neural Interfacing 
	2.3.1 Neural Recording 
	2.3.2 Cultured neurons: activity patterns, adhesion & survival 
	2.3.3 Neuro-technology 

	2.4 Neural Systems: Analysis and Control 
	2.4.1 Neural Mechanisms of Visual Selection 
	2.4.2 Models of Dynamic Neural Systems 
	2.4.3 Sensory Motor Mapping 
	2.4.4 Sensory Motor Control Systems 

	2.5 Neuro-electromagnetism 
	2.5.1 Magnetic Stimulation 
	2.5.2 Neural Signals Source Localization 

	2.6 Clinical Neural Engineering 
	2.6.1 Detection and mechanisms of epileptic activity 
	2.6.2 Diagnostic Tools 

	2.7 Neuro-electrophysiology 
	2.7.1 Neural Source Mapping 
	2.7.2 Neuro-Electrophysiology 
	2.7.3 Brain Mapping 


	3. Neuromuscular Systems and Rehabilitation Engineering 
	3.1 EMG 
	3.1.1 EMG modeling 
	3.1.2 Estimation of Muscle Fiber Conduction velocity 
	3.1.3 Clinical Applications of EMG 
	3.1.4 Analysis and Interpretation of EMG 

	3. 2 Posture and Gait 
	3.2.1 Posture and Gait

	3.3.Central Control of Movement 
	3.3.1 Central Control of movement 

	3.4 Peripheral Neuromuscular Mechanisms 
	3.4.1 Peripheral Neuromuscular Mechanisms II
	3.4.2 Peripheral Neuromuscular Mechanisms I 

	3.5 Functional Electrical Stimulation 
	3.5.1 Functional Electrical Stimulation 

	3.6 Assistive Devices, Implants, and Prosthetics 
	3.6.1 Assistive Devices, Implants and Prosthetics  

	3.7 Sensory Rehabilitation 
	3.7.1 Sensory Systems and Rehabilitation:Hearing & Speech 
	3.7.2 Sensory Systems and Rehabilitation  

	3.8 Orthopedic Biomechanics 
	3.8.1 Orthopedic Biomechanics 


	4. Biomedical Signal and System Analysis 
	4.1 Nonlinear Dynamical Analysis of Biosignals: Fractal and Chaos 
	4.1.1 Nonlinear Dynamical Analysis of Biosignals I 
	4.1.2 Nonlinear Dynamical Analysis of Biosignals II 

	4.2 Intelligent Analysis of Biosignals 
	4.2.1 Neural Networks and Adaptive Systems in Biosignal Analysis 
	4.2.2 Fuzzy and Knowledge-Based Systems in Biosignal Analysis 
	4.2.3 Intelligent Systems in Speech Analysis 
	4.2.4 Knowledge-Based and Neural Network Approaches to Biosignal Analysis 
	4.2.5 Neural Network Approaches to Biosignal Analysis 
	4.2.6 Hybrid Systems in Biosignal Analysis 
	4.2.7 Intelligent Systems in ECG Analysis 
	4.2.8 Intelligent Systems in EEG Analysis 

	4.3 Analysis of Nonstationary Biosignals 
	4.3.1 Analysis of Nonstationary Biosignals:EEG Applications II 
	4.3.2 Analysis of Nonstationary Biosignals:EEG Applications I
	4.3.3 Analysis of Nonstationary Biosignals:ECG-EMG Applications I 
	4.3.4 Analysis of Nonstationary Biosignals:Acoustics Applications I 
	4.3.5 Analysis of Nonstationary Biosignals:ECG-EMG Applications II 
	4.3.6 Analysis of Nonstationary Biosignals:Acoustics Applications II 

	4.4 Statistical Analysis of Biosignals 
	4.4.1 Statistical Parameter Estimation and Information Measures of Biosignals 
	4.4.2 Detection and Classification Algorithms of Biosignals I 
	4.4.3 Special Session: Component Analysis in Biosignals 
	4.4.4 Detection and Classification Algorithms of Biosignals II 

	4.5 Mathematical Modeling of Biosignals and Biosystems 
	4.5.1 Physiological Models 
	4.5.2 Evoked Potential Signal Analysis 
	4.5.3 Auditory System Modelling 
	4.5.4 Cardiovascular Signal Analysis 

	4.6 Other Methods for Biosignal Analysis 
	4.6.1 Other Methods for Biosignal Analysis 


	5. Medical and Cellular Imaging and Systems 
	5.1 Nuclear Medicine and Imaging 
	5.1.1 Image Reconstruction and Processing 
	5.1.2 Magnetic Resonance Imaging 
	5.1.3 Imaging Systems and Applications 

	5.2 Image Compression, Fusion, and Registration 
	5.2.1 Imaging Compression 
	5.2.2 Image Filtering and Enhancement 
	5.2.3 Imaging Registration 

	5.3 Image Guided Surgery 
	5.3.1 Image-Guided Surgery 

	5.4 Image Segmentation/Quantitative Analysis 
	5.4.1 Image Analysis and Processing I 
	5.4.2 Image Segmentation 
	5.4.3 Image Analysis and Processing II 

	5.5 Infrared Imaging 
	5.5.1 Clinical Applications of IR Imaging I 
	5.5.2 Clinical Applications of IR Imaging II 
	5.5.3 IR Imaging Techniques 


	6. Molecular, Cellular and Tissue Engineering 
	6.1 Molecular and Genomic Engineering 
	6.1.1 Genomic Engineering: 1 
	6.1.2 Genomic Engineering II 

	6.2 Cell Engineering and Mechanics 
	6.2.1 Cell Engineering

	6.3 Tissue Engineering 
	6.3.1 Tissue Engineering 

	6.4. Biomaterials 
	6.4.1 Biomaterials 


	7. Biomedical Sensors and Instrumentation 
	7.1 Biomedical Sensors 
	7.1.1 Optical Biomedical Sensors 
	7.1.2 Algorithms for Biomedical Sensors 
	7.1.3 Electro-physiological Sensors 
	7.1.4 General Biomedical Sensors 
	7.1.5 Advances in Biomedical Sensors 

	7.2 Biomedical Actuators 
	7.2.1 Biomedical Actuators 

	7.3 Biomedical Instrumentation 
	7.3.1 Biomedical Instrumentation 
	7.3.2 Non-Invasive Medical Instrumentation I 
	7.3.3 Non-Invasive Medical Instrumentation II 

	7.4 Data Acquisition and Measurement 
	7.4.1 Physiological Data Acquisition 
	7.4.2 Physiological Data Acquisition Using Imaging Technology 
	7.4.3 ECG & Cardiovascular Data Acquisition 
	7.4.4 Bioimpedance 

	7.5 Nano Technology 
	7.5.1 Nanotechnology 

	7.6 Robotics and Mechatronics 
	7.6.1 Robotics and Mechatronics 


	8. Biomedical Information Engineering 
	8.1 Telemedicine and Telehealth System 
	8.1.1 Telemedicine Systems and Telecardiology 
	8.1.2 Mobile Health Systems 
	8.1.3 Medical Data Compression and Authentication 
	8.1.4 Telehealth and Homecare 
	8.1.5 Telehealth and WAP-based Systems 
	8.1.6 Telemedicine and Telehealth 

	8.2 Information Systems 
	8.2.1 Information Systems I
	8.2.2 Information Systems II 

	8.3 Virtual and Augmented Reality 
	8.3.1 Virtual and Augmented Reality I 
	8.3.2 Virtual and Augmented Reality II 

	8.4 Knowledge Based Systems 
	8.4.1 Knowledge Based Systems I 
	8.4.2 Knowledge Based Systems II 


	9. Health Care Technology and Biomedical Education 
	9.1 Emerging Technologies for Health Care Delivery 
	9.1.1 Emerging Technologies for Health Care Delivery 

	9.2 Clinical Engineering 
	9.2.1 Technology in Clinical Engineering 

	9.3 Critical Care and Intelligent Monitoring Systems 
	9.3.1 Critical Care and Intelligent Monitoring Systems 

	9.4 Ethics, Standardization and Safety 
	9.4.1 Ethics, Standardization and Safety 

	9.5 Internet Learning and Distance Learning 
	9.5.1 Technology in Biomedical Engineering Education and Training 
	9.5.2 Computer Tools Developed by Integrating Research and Education 


	10. Symposia and Plenaries 
	10.1 Opening Ceremonies 
	10.1.1 Keynote Lecture 

	10.2 Plenary Lectures 
	10.2.1 Molecular Imaging with Optical, Magnetic Resonance, and 
	10.2.2 Microbioengineering: Microbe Capture and Detection 
	10.2.3 Advanced distributed learning, Broadband Internet, and Medical Education 
	10.2.4 Cardiac and Arterial Contribution to Blood Pressure 
	10.2.5 Hepatic Tissue Engineering 
	10.2.6 High Throughput Challenges in Molecular Cell Biology: The CELL MAP

	10.3 Minisymposia 
	10.3.1 Modeling as a Tool in Neuromuscular and Rehabilitation 
	10.3.2 Nanotechnology in Biomedicine 
	10.3.3 Functional Imaging 
	10.3.4 Neural Network Dynamics 
	10.3.5 Bioinformatics 
	10.3.6 Promises and Pitfalls of Biosignal Analysis: Seizure Prediction and Management 



	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Ö
	P
	Q
	R
	S
	T
	U
	Ü
	V
	W
	X
	Y
	Z

	Keyword Index
	-
	¦ 
	1
	2
	3
	4
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	i
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Committees
	Sponsors
	CD-Rom Help
	-------------------------
	Return
	Previous Page
	Next Page
	Previous View
	Next View
	Print
	-------------------------
	Query
	Query Results
	-------------------------
	Exit CD-Rom


